The N-terminal actin-binding tandem calponin-homology (CH) domain of dystrophin is in a closed conformation in solution and when bound to F-actin.

نویسندگان

  • Surinder M Singh
  • Krishna M G Mallela
چکیده

Deficiency of the vital muscle protein dystrophin triggers Duchenne/Becker muscular dystrophy, but the structure-function relationship of dystrophin is poorly understood. To date, molecular structures of three dystrophin domains have been determined, of which the N-terminal actin-binding domain (N-ABD or ABD1) is of particular interest. This domain is composed of two calponin-homology (CH) domains, which form an important class of ABDs in muscle proteins. A previously determined x-ray structure indicates that the dystrophin N-ABD is a domain-swapped dimer, with each monomer adopting an extended, open conformation in which the two CH domains do not interact. This structure is controversial because it contradicts functional studies and known structures of similar ABDs from other muscle proteins. Here, we investigated the solution conformation of the dystrophin N-ABD using a very simple and elegant technique of pyrene excimer fluorescence. Using the wild-type protein, which contains two cysteines, and the corresponding single-cysteine mutants, we show that the protein is a monomer in solution and is in a closed conformation in which the two CH domains seem to interact, as observed from the excimer fluorescence of pyrene-labeled wild-type protein. Excimer fluorescence was also observed in its actin-bound form, indicating that the dystrophin N-ABD binds to F-actin in a closed conformation. Comparison of the dystrophin N-ABD conformation with other ABDs indicates that the tandem CH domains in general may be monomeric in solution and predominantly occur in closed conformation, whereas their actin-bound conformations may differ.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The N- and C-Terminal Domains Differentially Contribute to the Structure and Function of Dystrophin and Utrophin Tandem Calponin-Homology Domains.

Dystrophin and utrophin are two muscle proteins involved in Duchenne/Becker muscular dystrophy. Both proteins use tandem calponin-homology (CH) domains to bind to F-actin. We probed the role of N-terminal CH1 and C-terminal CH2 domains in the structure and function of dystrophin tandem CH domain and compared with our earlier results on utrophin to understand the unifying principles of how tande...

متن کامل

Dystrophin's tandem calponin-homology domains: is the case closed?

Actin plays a central role in the eukaryotic cytoskeleton and interacts with a large number of proteins (1). The actin-binding domains in these proteins have been classified into different groups based on structural similarity. A repeat of two calponin-homology domains (designated CH1-CH2) constitutes one major class of low-affinity actin-binding domains (ABDs) (2,3). Despite the abundance and ...

متن کامل

Utrophin ABD binds to F-actin in an open conformation

Structural analyses of actin binding regions comprising tandem calponin homology domains alone and when bound to F-actin have revealed a number of different conformations with calponin homology domains in 'open' and 'closed' positions. In an attempt to resolve these issues we have examined the properties of the utrophin actin binding domain in open and closed conformations in order to verify th...

متن کامل

The actin binding affinity of the utrophin tandem calponin-homology domain is primarily determined by its N-terminal domain.

The structural determinants of the actin binding function of tandem calponin-homology (CH) domains are poorly understood, particularly the role of individual domains. We determined the actin binding affinity of isolated CH domains from human utrophin and compared them with the affinity of the full-length tandem CH domain. Traditional cosedimentation assays indicate that the C-terminal CH2 domai...

متن کامل

Large-scale opening of utrophin's tandem calponin homology (CH) domains upon actin binding by an induced-fit mechanism.

We have used site-directed spin labeling and pulsed electron paramagnetic resonance to resolve a controversy concerning the structure of the utrophin-actin complex, with implications for the pathophysiology of muscular dystrophy. Utrophin is a homolog of dystrophin, the defective protein in Duchenne and Becker muscular dystrophies, and therapeutic utrophin derivatives are currently being develo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 103 9  شماره 

صفحات  -

تاریخ انتشار 2012